The Santa Clarita Valley

Castaic Lake Water Agency (CLWA) and the local water retailers continuously work to provide new ways to ensure you and your neighbors have a reliable water supply at a reasonable price. We are committed to maintaining high quality water for you, our customers. The California Department of Public Health requires water agencies to publish a report that provides background on the quality of your water and shows you how it meets or exceeds federal and state drinking water standards.

This 2010 Annual Water Quality Report describes in detail the quality of local water supplies in Santa Clarita Valley. In 2009, CLWA and the local retailers met all of the drinking water quality standards. Further explanations of the requirements are in the accompanying pages.

Water conservation is a collaborative effort between CLWA, the local water retailers and their customers. Santa Clarita Valley's water supply remains sufficient to meet resident's needs in 2010, largely due to the community's ongoing conservation efforts and rainfall experienced earlier this year.

Despite this year's normal rainfall total, California has not yet recovered from three consecutive years of drought and residents need to continue to conserve water inside and outside. Remember to water at night or the early morning hours and regularly check your toilets and faucets for leaks.

Last year, we launched a series of programs to encourage residents and businesses to continue their conservation efforts. These programs include free on-site water survey for businesses, institutions and homeowners' associations as well as residential programs for free weather-based irrigation controllers. We urge businesses and institutional customers to take action and reduce water use by signing up for free water use surveys. We will evaluate your business' water use patterns and offer ways you can reduce water use and save money.

In addition, our new plant book "Colorful Landscapes for Water Conservation" makes it easy for both novice and experienced gardeners to incorporate California-friendly plants into their gardens. Take a trip to the CLWA Conservatory Garden to pick up your free copy or sign up for one of the free monthly Landscape Education workshops. Visit us on the web

at www.clwa.org for more easy water conservation tips. Also, check with your local water retailer for its conservation programs.

If you have any questions about this report or water quality, please contact us at 661-297-1600. Additional information is available from the local water retailers, whose contact information is supplied at the end of this report.

Sincerely,

Dan Masnada General Manager CLWA

Mauricio Guardado Retail Manager SCWD

> Adam Ariki District Engineer Los Angeles County Waterworks District #36

Steve Cole General Manager NCWD

Robert DiPrimio President VWC

NOTE: All of the test results in this report were run in 2009 unless noted otherwise. If you do not find a chemical listed in this report, it was not found in any test performed on local water. Your local water supplier is therefore in compliance with all drinking water regulations unless a specific violation is noted.

REMEMBER: Use Water Wisely, It's a Way of Life

SCWD CLWA SANTA CLARITA WATER DIVISION

VALENCIA WATER

LA COUNTY DEPARTMENT OF PUBLIC WORKS

The Castaic Lake Water Agency wants all customers to rethink household and outdoor water habits and reduce water use even more during the hot, dry summer months.

You can easily reduce water use with simple adjustments to your outdoor watering:

- Replace a section of your water guzzling grass with California friendly plants
- Reduce evaporation by watering at night or early morning
- Avoid runoff by setting your sprinklers to run for two short cycles

By conserving water, you help your water providers help you. To find out how, visit **clwa.org or scvh2o.org.**

FOR MORE INFORMATION

CASTAIC LAKE WATER AGENCY

David Kimbrough | 661-297-1600 x223 E-mail: dkimbrough@clwa.org | Website: www.clwa.org The Castaic Lake Water Agency is governed by a Board of Directors that meets at 6:30 pm on the second and fourth Wednesdays of each month at the Rio Vista Administration Building, 27234 Bouquet Canyon Road.

CLWA SANTA CLARITA WATER DIVISION

Cathy Hollomon | 661-259 -2737 E-mail: chollomon@scwater.org | Website: www.scwater.org The Santa Clarita Water Division is a division of the CLWA. The CLWA Retail Operations Committee meets at 6:30 pm on the first Monday of each month at the SCWD office, 22722 Soledad Canyon Road.

NEWHALL COUNTY WATER DISTRICT

Ryan Bye | 661-259-3610 E-mail: rbye@ncwd.org | Website: www.ncwd.org The Newhall County Water District is governed by a Board of Directors that meets at 6:30 pm on the second Thursday of each month at the District Board Room, 23655 Newhall Avenue, Suite "C."

VALENCIA WATER COMPANY

James Saenz | 661-294-0828

E-mail: jsaenz@valenciawater.com | Website: www.valenciawater.com The Valencia Water Company is a public water utility regulated by the California Public Utilities Commission. The office is located at 24631 Avenue Rockefeller.

LOS ANGELES COUNTY WATERWORKS DISTRICT NO. 36

Timothy Chen | (626) 300-3342

E-mail: tchen@dpw.lacounty.gov | Website: www.lacwaterworks.org Waterworks District No. 36 is governed by the Los Angeles County Board of Supervisors that meets every Tuesday at 9:30 am at the Kenneth Hahn Hall of Administration, 500 West Temple Street Room 381B, Los Angeles. On Tuesdays following a Monday holiday, the meetings begin at 1:00 pm.

Este informe contiene información muy importante sobre su agua potable. Si usted quisiera el texto en español para este reporte, comuníquese con David Kimbrough al número de teléfono 661-297-1600 x223.

PRST STD U.S. POSTAGE PAID PERMIT NO. 440 SANTA CLARITA, CA

CLWA PROVIDES WATER TO LOCAL PURVEYORS

CLWA receives and treats surface water from the SWP and other imported sources. The SWP consists of facilities operated by the California Department of Water Resources to conserve and convey water to SWP contractors for use as agricultural or urban supply. CLWA operates two water treatment plants, the Earl Schmidt Filtration Plant (ESFP) in Castaic and the Rio Vista Water Treatment Plant (RVWTP) in Saugus. The SCV's four water purveyors distribute the treated imported water along with groundwater from the shallow Alluvial aquifer and the deeper Saugus formation. Water quality information for your area is presented in the table contained in this report.

CLWA Santa Clarita Water Division (SCWD) provides water to a portion of the City of Santa Clarita and unincorporated portions of Los Angeles County in the communities of Saugus, Canyon Country and Newhall. Customers received approximately 64% imported water and 36% local groundwater in 2009.

Los Angeles County Waterworks District #36 (LACWD #36) serves customers located in Hasley Canyon and the community of Val Verde. Customers received 100% imported water in 2009.

Newhall County Water District (NCWD) serves customers located in the Castaic, Newhall, Pinetree and Tesoro del Valle areas. In 2009, Castaic customers received 43% imported water and 57% local groundwater, Newhall customers received 20% imported water and 80% local groundwater, and Pinetree customers received 77% imported water and 23% local groundwater. Tesoro del Valle customers received 100% imported water.

Valencia Water Company (VWC) supplies water to customers in Valencia, Stevenson Ranch, and portions of Castaic, Saugus, and Newhall. In 2009, VWC customers received 48% imported water and 51% local groundwater and 1% recycled water was delivered to large landscape customers.

Castaic Lake Water Agency Service Area

L.A. County Waterworks District #36 Newhall County Water District Santa Clarita Water Division Valencia Water Company CLWA Boundary NCWD Castaic NCWD Fesoro NCWD Pinetree NCWD Pinetree NCWD Pinetree NCWD Newhall Foret

CHEMICALS IN THE NEWS – NITROSAMINES (NDMA)

In complying with USEPA sampling requirements under the Unregulated Contaminant Monitoring Regulation – Cycle 2 (UCMR2), Valencia Water Company detected N-Nitrosodimethylamine (NDMA) above the detection limit for reporting of 2.0 parts per trillion in a few samples. These detections are at extremely low concentrations.

NDMA is formed from nitrites and amines. Recent research and results of UCMR2 data suggest this contaminant is created as a disinfection by-product during water treatment processes. In addition, NDMA has been found in groundwater near sites that used or manufacture rocket fuel or other combustible compounds.

Public health authorities are expected to regulate NDMA over the next few years. Recent laboratory studies have indicated NDMA caused various health risks in laboratory animals, including liver, kidney, lung and stomach cancer. NDMA has been detected in nearly 25% of public water supplies during the first 24 months of UCMR2 monitoring, at concentrations as high as 600 parts per trillion. For details you can visit the UCMR section on the EPA's website at http://www.epa.gov/safewater/ucmr/data.html.

WATER QUALITY DEFINITIONS

In order to ensure that tap water is safe to drink, the United States Environmental Protection Agency (USEPA) and the California Department of Public Health (DPH) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. USEPA, DPH and the California Environmental Protection Agency (CalEPA) set goals and legal standards for the quality of drinking water. These standards are intended to protect consumers from contaminants in drinking water. Most of the standards are based on the concentration of contaminants, but a few are based on a Treatment Technique (TT) to remove the contaminant. Drinking water, including bottled water, may reasonably be expected to contain a least small amounts of some contaminants. The presence of contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline 1-800-426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline.

When a contaminant is regulated based on concentration, there are three levels that are listed: 1) **Detection Limit for Report (DLR)**, 2) the **Public Health Goal (PHG)** or **Maximum Contaminant Level Goal (MCLG)**, and 3) the **Maximum Contaminant Level (MCL)**, Action Level (AL) or Notification Level (NL).

The DLR is the smallest concentration of a contaminant that can be measured and reported. DLRs are set by DPH (same as MRL, Minimum Reporting Level, set by USEPA).

PHG and MCLG are the level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by Cal EPA. MCLGs are set by the USEPA.

A Primary MCL is the highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible.

Secondary MCLs are set to protect the odor, taste and appearance of drinking water.

ALs are federal standards developed by USEPA that address the concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

NLs are state guidelines developed by DPH that address the concentration of a contaminant which, if exceeded, triggers public notification.

TTs are a required process intended to reduce the level of a contaminant in drinking water.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

METALS AND SALTS

Metals and salts are tested in groundwater from wells once every three years and in Castaic Lake water every month. Small quantities of naturally occurring arsenic are found in Castaic Lake and in groundwater from a few wells. These are present due to the natural erosion of the rocks that water travels over or through. Inorganic compounds such as salts and metals can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

A number of naturally occurring salts are found in both surface and well water. These include chloride, fluoride, nitrate, nitrite, calcium, magnesium, potassium, and sodium. Taken together they are called Total Dissolved Solids (TDS). Calcium and magnesium together are called "hardness" and can deposit as scale.

Nitrate in drinking water at levels above 45 mg/L is a health risk for infants less than six months of age. High nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. High nitrate levels may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are pregnant or caring for an infant, you should ask for advice from your health care provider. Nitrates are tested at least annually.

While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The USEPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

DISINFECTION BY-PRODUCTS

The CLWA uses ozone and chloramines to disinfect its water. Disinfection By-Products (DBPs), which include Trihalomethanes (THMs) and Haloacetic Acids (HAA5) are generated by the interaction between naturally occurring organic matter and disinfectants such as chlorine and ozone. THMs and HAA5 are measured at several points in each system and averaged once per quarter and reported as a running annual average.

Ozone is a very powerful disinfectant that not only kills organisms that no other disinfectant can but also destroys organic chemicals that cause unpleasant tastes and odors.

MICROBIOLOGICAL

Microbial contaminants, such as viruses and bacteria, can be naturally occurring or result from urban storm water runoff, sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

The most important microbiological drinking water tests are for bacteria. Water is tested throughout the systems weekly for Total Coliform bacteria and for Escherichia coli (E. coli). The presence of E. coli indicates fecal contamination of waters. No E.coli was detected in any drinking waters in the SCV last year. Total coliforms are a group of bacteria that indicate water quality may have deteriorated. The MCL for total coliforms is 5% of all monthly tests showing positives for larger systems.

Additional microbiological tests for the water-borne parasites cryptosporidium parvum and giardia lamblia were performed on Castaic Lake water, and none were detected.

RADIOLOGICAL TESTS

Radioactive compounds can be found in both ground and surface waters, and can be naturally occurring or be the result of oil and gas production and mining activities. Testing is conducted for two types of radioactivity: alpha and beta. If none is detected at concentrations above five picoCuries per liter no further testing is required. If it is detected, the water must be checked for uranium and radium.

CLWA is required to monitor its source water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. CLWA failed to monitor as required for drinking water standards during the past two year and, therefore, was in violation of the regulations. In 2008 and 2009 one sample should have been collected for both tritium and strontium-90. Therefore, the quality of our drinking water during those two years is uncertain in regard to those two analytes. Even though this failure was not an emergency, as our customers, you have a right to know what you should do, what happened, and what we did to correct this situation. There is nothing you need to do at this time. CLWA has collected the appropriate samples and no standards were exceeded, as results from sampling in years preceding 2008 also indicated.

LEAD AND COPPER

The local water retailers are required to sample for lead and copper at specific consumer taps every three years. The results for lead and copper are reported as the 90th percentile. The 90th percentile is the result that is greater than 90% of all the results. Infants and young children are typically more vulnerable to lead in drinking water than the general population. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. CLWA and the retailers are responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline 1-800-42604791 or at http://www.epa.gov/safewater/lead

ORGANIC COMPOUNDS

Organic chemical contaminants, including synthetic and volatile organic chemicals, are by products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems. Organic compounds also include pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses. Water is tested for two types of organic compounds: volatile organic compounds (VOCs) and non-volatile synthetic organic compounds (SOCs). These organic compounds are synthetic chemicals produced from industrial and agricultural uses. Castaic Lake is checked annually for VOCs and SOCs. Local wells are tested at least annually for VOCs and periodically for SOCs. Tetrachloroethylene (PCE) was found in trace levels (below the MCL in groundwater in the SCV. Some people who use water containing tetrachloroethylene in excess of the MCL over many years may experience liver problems, and may have an increased risk of getting cancer.

DRINKING WATER SOURCE ASSESSMENT AND PROTECTION

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

- Contaminants that may be present in source water include:
- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the DPH prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Department regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

As part of DPH requirements, the retailers of the SCV conducted a Drinking Water Source Assessment and Protection (DWSAP) study for all of their groundwater sources. This study enables DPH and water utilities to collect information about each drinking water source and surrounding residential, commercial, and industrial activities. It was completed and provided to DPH in 2002.

As part of the program, "surrounding activities" which include schools, medical offices, gas stations and various other facilities around each water source are categorized and ranked as "possible contaminating activities" (PCA). Below is a list of PCAs that may have contributed to trace levels of contaminants in local wells. Trace levels of PCE (below the MCL) have been detected in one well.

- Automobile/gas stations, auto shops tetrachloroethylene (PCE) Dry cleaners PCE
- Known contaminant plumes perchlorate

In addition, a known perchlorate contaminant plume has been identified and several wells have tested positive for perchlorate. In October 2007, DPH adopted an MCL of 6 ug/L for this contaminant. Prior to October, a PHG of 6 ug/L and a notification level (NL) of 6 ug/L were established by the Office of Health Hazard Assessment and the DPH respectively.

In 2008, all of the surface water supplied to the SCV was provided by or delivered through the SWP via Castaic Lake. The Department of Water Resources produces a watershed sanitary survey (WSS) of the SWP watersheds every five years. The last survey was published in 2001. Based on that WSS, a DWSAP study for Castaic Lake was completed in 2003. The study found that Castaic Lake supplies are considered to be most vulnerable to septic and sewage lift stations, recreational activities, boating, traffic accidents and spills, grazing livestock, algal blooms and fires.

Assessments for SCWD's two new drinking water sources, the Santa Clara and Valley Center wells, were completed in January 2009 and February 2009 respectively. The Santa Clara well is considered principally vulnerable to septic systems although this assessment was not made as a result of any detected contaminant.

The Valley Center well is considered principally vulnerable to the following activities also not made as a result of any detected contaminants: automobile body and repair shops, fleet/truck/ bus terminals, furniture repair/manufacturing, machine shops, photo processing/printing, and sewer collection systems. Copies of the complete assessments are available at the SCWD office located at 22722 Soledad Canyon Road in Santa Clarita. You may request summaries of the assessments be sent to you by contacting Cathy Z. Hollomon at (661) 259-2737.

Additional DWSAP information is available upon request from your local water retailers. Contact names and numbers are supplied at the end of this report.

The Results of Thousands of Tests on Your Water

PARAMETERS/ CONSTITUENTS	Units	MCL (AL)	MCLG (PHG)	DLR	Castaic Lake Water Agency Wholesale Division			Castaic Lake Water Agency Santa Clarita Division			Valencia Water Company			Newhall County Water District Castaic			Newhall County Water District Newhall			Newhall County Water District Pinetree			Newhall County Water District Tesoro ¹			Los Angeles County Water Works District #36 ¹		
INORGANICS			(i iid)		Minimum	Maximum	Typical	Minimum	Maximum	Typical	Minimum	Maximum	Typical	Minimum	Maximum	Typical	Minimum	Maximum	Typical	Minimum	Maximum	Typical	Minimum	Maximum	Typical	Minimum	Maximum	Typical
Aluminum	μα/Ι	1000	(60)	50	<di r<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th>90</th><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th></th><th></th><th>.)prour</th><th></th><th></th><th>Jpiour</th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di>	<di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th>90</th><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th></th><th></th><th>.)prour</th><th></th><th></th><th>Jpiour</th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di>	<di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th>90</th><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th></th><th></th><th>.)prour</th><th></th><th></th><th>Jpiour</th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di>	<di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th>90</th><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th></th><th></th><th>.)prour</th><th></th><th></th><th>Jpiour</th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di>	<di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th>90</th><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th></th><th></th><th>.)prour</th><th></th><th></th><th>Jpiour</th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di>	<di r<="" th=""><th><di b<="" th=""><th>90</th><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th></th><th></th><th>.)prour</th><th></th><th></th><th>Jpiour</th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di>	<di b<="" th=""><th>90</th><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th></th><th></th><th>.)prour</th><th></th><th></th><th>Jpiour</th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di>	90	<di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th></th><th></th><th>.)prour</th><th></th><th></th><th>Jpiour</th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di>	<di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th></th><th></th><th>.)prour</th><th></th><th></th><th>Jpiour</th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di>	<di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th></th><th></th><th>.)prour</th><th></th><th></th><th>Jpiour</th></di></th></di></th></di></th></di></th></di></th></di></th></di></th></di>	<di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th></th><th></th><th>.)prour</th><th></th><th></th><th>Jpiour</th></di></th></di></th></di></th></di></th></di></th></di></th></di>	<di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th></th><th></th><th>.)prour</th><th></th><th></th><th>Jpiour</th></di></th></di></th></di></th></di></th></di></th></di>	<di r<="" th=""><th><di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th></th><th></th><th>.)prour</th><th></th><th></th><th>Jpiour</th></di></th></di></th></di></th></di></th></di>	<di r<="" th=""><th><di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th></th><th></th><th>.)prour</th><th></th><th></th><th>Jpiour</th></di></th></di></th></di></th></di>	<di b<="" th=""><th><di r<="" th=""><th><di r<="" th=""><th></th><th></th><th>.)prour</th><th></th><th></th><th>Jpiour</th></di></th></di></th></di>	<di r<="" th=""><th><di r<="" th=""><th></th><th></th><th>.)prour</th><th></th><th></th><th>Jpiour</th></di></th></di>	<di r<="" th=""><th></th><th></th><th>.)prour</th><th></th><th></th><th>Jpiour</th></di>			.)prour			Jpiour
Arsenic	ug/L	10	None	2	2.2	5.6	4.2	<dlr< td=""><td>2.3</td><td><dlr< td=""><td><dlr< td=""><td>4.6</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>4.3</td><td>2.2</td><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	2.3	<dlr< td=""><td><dlr< td=""><td>4.6</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>4.3</td><td>2.2</td><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td>4.6</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>4.3</td><td>2.2</td><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	4.6	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>4.3</td><td>2.2</td><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>4.3</td><td>2.2</td><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>4.3</td><td>2.2</td><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>4.3</td><td>2.2</td><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>4.3</td><td>2.2</td><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>4.3</td><td>2.2</td><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td>4.3</td><td>2.2</td><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<>	<dlr< td=""><td>4.3</td><td>2.2</td><td></td><td></td><td></td><td></td><td></td><td></td></dlr<>	4.3	2.2						
Barium	ug/L	1000	(2000)	100				<dlr< td=""><td>140</td><td><dlr< td=""><td><dlr< td=""><td>103</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>150</td><td><dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	140	<dlr< td=""><td><dlr< td=""><td>103</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>150</td><td><dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td>103</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>150</td><td><dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	103	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>150</td><td><dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>150</td><td><dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>150</td><td><dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>150</td><td><dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>150</td><td><dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>150</td><td><dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td>150</td><td><dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td>150</td><td><dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<>	150	<dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></dlr<>						
Boron	ug/L	None	None	100				490	1800	1000																		
Fluoride ²	ma/L	2	(1)	0.1	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>0.30</td><td>0.52</td><td>0.4</td><td>0.10</td><td>0.80</td><td>0.40</td><td>0.5</td><td>0.5</td><td>0.5</td><td>0.30</td><td>0.40</td><td>0.35</td><td>0.34</td><td>0.45</td><td>0.40</td><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td>0.30</td><td>0.52</td><td>0.4</td><td>0.10</td><td>0.80</td><td>0.40</td><td>0.5</td><td>0.5</td><td>0.5</td><td>0.30</td><td>0.40</td><td>0.35</td><td>0.34</td><td>0.45</td><td>0.40</td><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<>	<dlr< td=""><td>0.30</td><td>0.52</td><td>0.4</td><td>0.10</td><td>0.80</td><td>0.40</td><td>0.5</td><td>0.5</td><td>0.5</td><td>0.30</td><td>0.40</td><td>0.35</td><td>0.34</td><td>0.45</td><td>0.40</td><td></td><td></td><td></td><td></td><td></td><td></td></dlr<>	0.30	0.52	0.4	0.10	0.80	0.40	0.5	0.5	0.5	0.30	0.40	0.35	0.34	0.45	0.40						
Nitrate (as NO3)	mg/L	45	(45)	2	<dlr< td=""><td>4.4</td><td>2.3</td><td>11</td><td>32</td><td>23</td><td>6.7</td><td>28.2</td><td>16.8</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>15.0</td><td>36.0</td><td>28.4</td><td>8.8</td><td>20</td><td>12.9</td><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	4.4	2.3	11	32	23	6.7	28.2	16.8	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>15.0</td><td>36.0</td><td>28.4</td><td>8.8</td><td>20</td><td>12.9</td><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td>15.0</td><td>36.0</td><td>28.4</td><td>8.8</td><td>20</td><td>12.9</td><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<>	<dlr< td=""><td>15.0</td><td>36.0</td><td>28.4</td><td>8.8</td><td>20</td><td>12.9</td><td></td><td></td><td></td><td></td><td></td><td></td></dlr<>	15.0	36.0	28.4	8.8	20	12.9						
ORGANICS	Ū		()																									
Tetrachloroethylene ³	ug/L	5	(0.06)	0.5	<dlr< td=""><td><dlr< td=""><td>0.60</td><td><dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td>0.60</td><td><dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td>0.60</td><td><dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td>0.60</td><td><dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td>0.60</td><td><dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td>0.60</td><td><dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>0.60</td><td><dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>0.60</td><td><dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>0.60</td><td><dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>0.60</td><td><dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>0.60</td><td><dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>0.60</td><td><dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>0.60</td><td><dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>0.60</td><td><dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td>0.60</td><td><dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td>0.60</td><td><dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<>	0.60	<dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></dlr<>						
DISINFECTION BY-PRODUCTS																												
Bromate RVWTP	ug/L	10	0	5	<dlr< td=""><td>6.0</td><td><dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<>	6.0	<dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dlr<>																					
Bromate ESFP	ug/L	10	0	5	<dlr< td=""><td>11</td><td><dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<>	11	<dlr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dlr<>																					
Haloacetic Acids (HAA5)	ug/L	60	0	1.0	2.0	8.1	4.4	0	17	4.3	0	5.8	2.8	1.9	4.1	3.1	<dlr< td=""><td>3.4</td><td>0.1</td><td>2.6</td><td>5.3</td><td>3.9</td><td>3.2</td><td>8.6</td><td>4.9</td><td><dlr< td=""><td>23.1</td><td>8.6</td></dlr<></td></dlr<>	3.4	0.1	2.6	5.3	3.9	3.2	8.6	4.9	<dlr< td=""><td>23.1</td><td>8.6</td></dlr<>	23.1	8.6
Trihalomethanes, Total (TTHMs)	ug/L	80	0	0.5	8.0	23.0	16.0	0.95	72	18.7	1.7	36	16.5	9.3	19	13.4	<dlr< td=""><td>19.0</td><td>1.6</td><td>12</td><td>21</td><td>16.9</td><td>18</td><td>39</td><td>26.4</td><td>12.3</td><td>33</td><td>24.5</td></dlr<>	19.0	1.6	12	21	16.9	18	39	26.4	12.3	33	24.5
MICROBIOLOGICAL																												
Coliform % Positive Samples	%	5	0		0	1	0	0	1	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CLARITY / TURBIDITY																												
Surface Water Only RVWTP	NTU	TT = 1 NTU	None		0.07	0.12	0.09																					
		$TT = 95\% \text{ of Samples} \le 0.2 \text{ NTU}$			100	100	100																					
Surface Water Only ESFP	NTU	TT = 1 NTU	None		0.07	0.15	0.10																					
		$TT = 95\%$ of Samples \leq			100	100	100																					
		0.2 NTO																										
Alpha Activity Gross	nCi/l	15	0	3		5.8	33		17	24		5.96			7.6		46	5.8	5.2		17	8.4						
Poto Activity, 01055	pCi/L	50	0	3					4.7	2.4	< DLN	5.90	< DLN				4.0				27	10.4						
Beld Activity, dross	pCi/L	5	0	4	< DLN	< ULN	<uln< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>10.4</td><td></td><td></td><td></td><td></td><td></td><td></td></uln<>															10.4						
Ilranium	pCi/L	20	(0.2)	ו י	2.1	10	4.1	< ULN 1 7		< DLh		< DLn						< DLn 2.8	< DLn		< DLn 20	<uln 11.35</uln 						
Vear of Analysis	poi/L	20	(0.2)	2	2009	2009	2009	2009	2009	2.0	2009	2.5	2009	<dln 2008</dln 	<dln 2008</dln 	< DLN 2008	2009	2.0	2.1	<dln 2005/</dln 	20	2005/						
					2003	2005	2003	2003	2005	2003	2005	2005	2005	2000	2000	2000	2005	2005	2005	2003/	2009	2003/						
LEAD AND COPPER								90th Percentile	No. of	No. of	90th Percentile	No. of	No. of	90th Percentile	No. of	No. of	90th Porcontilo	No. of	No. of	90th Percentile	No. of	No. of	90th Porcontilo	No. of	No. of	90th Porcontilo	No. of	No. of
(notanois only)								roroontilo	Tested	Above the AL	roroonaio	Tested	Above the AL	rereentite	Tested	Above the AL	roroontilo	Tested	Above the AL	roroontilo	Tested	Above the AL	roroontilo	Tested	Above the AL	roroontilo	Tested	Above the AL
Copper	ug/L	(1300)	(170)	50			NA	480	54	1	690	32	1	400	20	0	1100	30	3	1100	20	1	180	20	0	538	23	0
Lead	ug/L	(15)	(2)	5			NA	7.4	54	2	6	32	1	2.5	20	0	9.5	30	3	3.3	20	0	12	20	1	6	23	0
Year of Analysis								2009	2009	2009	2007	2007	2007	2009	2009	2009	2009	2009	2009	2009	2009	2009	2008	2008	2008	2008	2008	2008
SECONDARY STANDARDS					Minimum	Maximum	Typical	Minimum	Maximum	Typical	Minimum	Maximum	Typical	Minimum	Maximum	Typical	Minimum	Maximum	Typical	Minimum	Maximum	Typical	Minimum	Maximum	Typical	Minimum	Maximum	Typical
Chlorides ⁴	mg/L	250/500/600			74	78	76	67	110	92	24	128	71	75	76	76	35	40	37.5	78	140	109						
Color	Units	15			5	10	5	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td></td><td></td><td></td><td></td><td></td><td></td></dlr<></td></dlr<>	<dlr< td=""><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td></td><td></td><td></td><td></td><td></td><td></td></dlr<>	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5						
Odor-Threshold	Units	3			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1						
Sulfates ^₄	mg/L	250/500/600		1	50	63	56	110	200	159	127	406	226	100	110	107	150	210	180	99	120	110						
Turbidity	NTU	5			0.44	1.87	1.02	0.05	0.71	0.13	0.05	0.33	0.11	0.07	0.34	0.17	0.15	0.19	0.17	0.06	0.21	0.14						
Total Dissolved Solids ⁴	mg/L	500/1000/1500			285	387	333	650	888	777	542	983	732	466	478	474	592	716	654	610	764	687						
Conductivity ⁴	uS / cm	900/1600/2200			540	585	562	1000	1310	1162	872	1572	1175	777	789	782	803	973	888	984	1290	1137						
ADDITIONAL TESTS																												
Calcium	mg/L				27	35	31	94	140	111	87	147	107	54	61	58	83	120	102	94	110	102						
Magnesium	mg/L				11	13	12	24	48	33	23.3	45	33.8	23	23	23	18	28	23	21	24	22.5						
Sodium	mg/L				56	69	61	71	110	95	55	117	86.1	68	69	205	51	61	56	81	140	110.5						
Potassium	mg/L				2.3	3.2	2.8	2.3	4.7	3.8	1.3	5	3.3	3.3	3.7	3.5	2.2	2.2	2.2	3.2	3.4	3.3						
Hardness as CaCO ³	mg/L				114	137	127	334	502	412	317	535	407	235	238	237	274	415	345	334	361	348						
pH	Units				7.60	8.40	7.92	7.6	7.9	7.8	7.22	7.57	7.47	7.61	7.70	7.64	7.25	7.35	7.30	7.17	7.28	7.23						
Alkalinity as CaCO ³	mg/L				81	99	90	130	330	285	166	304	240	167	176	172	183	221	202	289	359	324						
Key for the Charts used in this Report 1 All values for NCWD Tesoro Water and Los Angeles County Waterworks District #36 are the same as CLWA, except in the specific rows shown. 2 Depending on annual temperatures				 3 Some people who use water containing tetrachloroethylene in excess of the MCL over many years may experience liver problems, and may have an increased risk of getting cancer. 4 There are three MCLs for these parameters: The first is the recommended, long term. The second is the upper, long term. 								AL Actio DLR De ESFP Ea MCL Ma	AL Action Level DLR Detection Limit for Reporting ESFP Earl Schmidt Filtration Plant MCL Maximum Contaminant Level				G Maximum Microgram / . Milligram / Millisiemens	Contamina ' Liter Liter / Centimete	ınt Level Goal er	.evel Goal NTU Nephlometric Turbidity Units NA Not Analyzed/Not Applicable pCi/L Picocurie / Liter PHG Public Health Goal				RVV Pla ESF	RVWTP Rio Vista Water Treatment Plant ESFP Earl Schmidt Filtration Plant			

Depending on ai temper

The third is short term.